SlideShare a Scribd company logo
Ìýäýýëëèéí ñèñòåì, àëãîðèòìèéí ¿íäýñ   Ëåêö ¹14
Àãóóëãà 1.Äýä àëãîðèòì ôóíêö 2.Ôóíêö õýðýãëýõ 3. Õ¿ñíýãòýí àðãóìåíòòàé äýä àëãîðèòì
Äýä àëãîðèòì-ôóíêö Èéìä àëãîðèòìûí õýëýíä ôóíêöèéã:   Ôóíêö íýð (òºðºë_1 ïàðàìåòð_1,…,òºðºë_n ïàðàìåòð_n) áóö(áóöààõ_óòãà);   Áèå ¿éëäë¿¿ä
Ýíä áóöààõ_óòãà íü õóâüñàã÷ áîëîí äóðûí èëýðõèéëýë áàéæ áîëíî.   Ôóíêö õýðýãëýõ Ìàòåìàòèê ôóíêöèéã èëýðõèéëýëä  øóóä áè÷èæ àøèãëàäàã ó÷èð åðäèéí äýä àëãîðèòìààñ èë¿¿ òîõèðîìæòîé áàéäàã
Æ1 : x,  õýðýâ x  y max(x,y)=  ôóíêöèéã àøèãëàí y,  õýðýâ x<y ºãñºí a,b,c áîäèò óòãàíä
Áîäîëò Àðã a,b,c; ¿ð ä¿í: t áîäèò:a,b,c,t; îðóóë(a,b,c); t:=  t:=t/(1+ ãàðãà (t); òºãñ. ôóíêö max(x,y) õýðýâ y>x áîë x:=y áóö (x); max(a,b+c)+ Max(a,a+c): Max(a+b*c,3.1415));
Äýä àëãîðèòìûã àøèãëàõ Àðãóìåíòèéí ºãñºí óòãàíä òîäîðõîé íýã óòãûã õàðãàëçóóëàí áîäîæ ºãäºã äýä àëãîðèòìûã ôóíêö õýëáýðòýé áè÷èõ íü èë¿¿ òîõèðîìæòîé.
Ãýòýë áè÷èõ,óíøèõ,íýýõ,õààõ ã.ì òîäîðõîé ¿éëäýë áèåë¿¿ëýõ ýñâýë õýä õýäýí óòãà áîäîõîä çîðèóëñàí äýä àëãîðèòìûã  äýä_àëã   õýëáýðòýé ãîëöóó áè÷èæ øààðäëàãòàé ¿éëäëèéã ã¿éöýòãýõèéí òóëä õàðãàëçàõ äýä àëãîðèòìûã íýðýýð íü äóóäàæ òóñãàé íýã ¿éëäýë ìýò áè÷èæ àøèãëàäàã áàéíà.
Ôóíêö çîõèîæ àøèãëàõ æèøýý 2.Íàòóðàë òîî n ºãºãäñºí áîë n,n+1,…,2n òîîíóóä äîòîð ÿëãàâàð íü 2-òîé òýíö¿¿ áàéõ àíõíû òîîíóóä áàéãàà ýñýõèéã øàëãà.
Áîäîëò Íàò:n,k ; òåêñò s ; îðóóë(n); s:=‘áàéõã¿é’; K:=n,2*n-2 ¿åä_äàâò   õýðýâ prime(k) and prime(k+2)   áîë {ãàðãà(k,k+2);s:=‘áàéíà’} Ãàðãà(s) Òºãñ.
Õ¿ñíýãòýí àðãóìåíòòàé äýä àëãîðèòì Íýã áîëîí îëîí õýìæýýñò õ¿ñíýãòèéã   áîëîâñðóóëàõ ¿éëäýë ïðàêòèêò ò¿ãýýìýë   øààðäàãääàã òóë ýäãýýð ¿éëäëèéã ã¿éöýòãýõ   àëãîðèòìûã  äýä àëãîðèòì  áîëîí  ôóíêö   õýëáýðòýé áè÷èõ íü èë¿¿ òîõèðîìæòîé.
Èéì òîõèîëäîëä äýä àëãîðèòìûí àðãóìåíò íü  õ¿ñíýãò  áàéõ ¸ñòîé. Äýä àëãîðèòìûí àðãóìåíòûí óòãûã ãëîáàëü õóâüñàã÷èéí òóñëàìæòàéãààð äàìæóóëàõ íü òîõèðîìæã¿é òóë  äýä àëãîðèòì, ôóíêöèéã  õèéñâýð àðãóìåíòòàé  áè÷äýã.
Õèéñâýð àðãóìåíòòàé õ¿ñíýãò áàéõ ¿åä: ò¿ëõ¿¿ð ¿ã   õ¿ñíýãò ;   ¿¿íèé   òóñëàìæòàéãààð ò¿¿íèéã òîäîðõîéëæ   íýð, õýìæýýñ, ýëåìåíòèéí òîî - ã çààæ ºãíº. Èíãýõýä ñàíàõ îé õóâààðèëàãääàã áà ò¿¿íèé ýëåìýíòýä äóãààðààð íü õàíäàæ áè÷èõ íºõöºë á¿ðääýã.
Õ¿ñíýãòýí àðãóìåíòòàé äýä àëãîðèòì, ôóíêöèéí õóâüä õèéñâýð àðãóìåíòûã òîäîðõîéëæ ºãºõ人:  1. Ýíý àðãóìåíò íü õ¿ñíýãò ãýäãèéã ÿëãàæ, çààæ ºãºõ øààðäëàãàòàé . 2. Óã õ¿ñíýãòèéí ýëåìåíòèéí òîî, áóþó   õýìæýýã   ìºí àðãóìåíò áîëãîí àâäàã  áàéõààð òîäîðõîéëîõ íü ç¿éòýé.
Õèéñâýð àðãóìåíòûí æèãñààëò äîòîð õ¿ñíýãòèéã òîäîðõîéëîõäîî, ¿íäñýí àðãóìåíòýä ò¿¿íèéã òîäîðõîéëäîã àðãûã õýðýãëýäýã. Òýãýõäýý õ¿ñíýãòèéí æèíõýíý óòãûã õóóëæ äàìæóóëíà ãýäýã, ñàíàõ îé èõ øààðäàõààñ ãàäíà, õóãàöàà àëäàõàä õ¿ðäýã òóë õ¿ñíýãòèéí çºâõºí õàÿãèéã äàìæóóëàõ àðãà õýðýãëýíý.  Èíãýñíýýð ýëåìýíòèéí   m àõ  òîîã áè÷èõ øààðäëàãàã¿é áîëíî.
Æèøýý 3. : Íàòóðàëü òîî  n,m  áà à 1 ,à 2 ,...à n ; b 1 ,b 2 ,…b n  ãýñýí 2 áîäèò òîîíû äàðààëàë ºãºãäñºí áîë 2 äàðààëëûí  max  óòãóóäûí ÿëãàâàðûí êâ-ûã îë. Ôóíêö  array _max ( áîäèò õ¿ñíýãò à (5), íàò  n) áîäèò  max; int i; max:=a i I:=2,n  ¿åä_äàâò õýðýâ  max<a i   áîë  max:= à i Áóö (max);
Æ: Àëã  áîäèò õ¿ñíýãò à (mn), b(mn); íàò  n,m,I; Áîäèò  s; Îðóóë  (n); Îðóóë  (a i ; I:=1,n); Îðóóë  ((m);  Îðóóë  (b i ; I:=1,m); s:=(array_max(a, n)-array_max(b,m)) 2 Ãàðãà (s) Òºãñ
Æèøýý 4 :  Áîäèò òîî à 1 ,à 2 , b 1 ,b 2 ,c 1 ,c 2  ºãºãäñºí áîë  { ãýñýí øóãàìàí òýãøèòãýëèéí ñèñòåìèéí øèéäèéã îë. ¯¿íèéã êðàìåðèéí ä¿ðìýýð áîäíî.Ýíý ä¿ðýì ¸ñîîð ñèñòåìèéí ¿ë ìýäýãäýã÷¿¿äèéí ºìíºõ êîýôôèöèåíò áîëîí ñóë ãèø¿¿íýýð çîõèîñîí òîäîðõîéëîã÷óóäààð øèéäèéã øèíæèëæ òîãòîîäîã.¯¿íä :
Õýðýâ  d= 0 áîë   ñèñòåì ãàíö øèéäòýé áºãººä  x=d x /d  ,  y=d y /d  áàéíà. Õýðýâ  d,d x ,d y  =0  áóþó  d=0  áà  d x 2 +d y 2 =0  áîë ñèñòåì òºãñãºëã¿é îëîí øèéäòýé. Õýðýâ  d=0  áà  d x 2 +d y 2 =0  áîë ñèñòåì îãò øèéäã¿é áàéíà  Ýíäýýñ ¿çâýë 2-ð ýðýìáèéí òîäîðõîéëîã÷ áîäîõ àëãîðèòì 3-í óäàà øààðäàãäàõ òóë ºãñºí ìàòðèöàä õàðãàëçàõ òîäîðõîéëîã÷èéã áîäîõ ôóíêöèéã çîõèîæ àøèãëàâàë çîõèíî Ôóíêö  det( áîäèò õ¿ñíýãò  a(2,2)) Áîäèò  ó ;   ó: =a 11 a 22 -a 12 b 21   Áóö ( ó )
Ô óíêöèéã àøèãëàí øóãàìàí òýãøèòãýëèéí ñèñòåìèéã øèíæëýõ àëãîðèòìûã áè÷âýë: Æèøýý   5:   íàò  n=2; áîäèò õ¿ñíýãò a(n,n),c(n),d(n),b(n,n); áîäèò  dd;   íàò  I,j,k; òåêñò  s; i:=1,n  ¿åä_äàâò {j:=1,n  ¿åä_äàâò îðóóë (a ij );  îðóóë  (c i )}; dd:=det(a); k:=1,n  ¿åä_äàâò   {I:=1,n  ¿åä_äàâò   {J:=1,n  ¿åä_äàâò  b ij  :=a ij  ;  b ik :=c i ; };
{J:=1,n  ¿åä_äàâò  b ij  :=a ij  ;  b ik :=c i ; }; d k := det(b) }; Õýðýâ  dd=0 áîë { ãàðãà (‘x=‘,d 1 /dd,’y=‘,d 2 /dd) ; s:=‘ ñèñòåì ãàíö øèéäòýé ’}   Ýñâýë õýðýâ  d 1 2 +d 2 2 =0  áîë  s:=‘ ñèñòåì òºãñãºëã¿é îëîí øèéäòýé ’  Ýñâýë  s:=‘ ñèñòåì øèéäã¿é ’   ãàðãà (s) Òºãñ
Æèøýý 6 :Îþóòíû á¿ðòãýë ìýäýýëëèéã   áîëîâñðóóëàõ àëãîðèòìä 2 öèôðèéí êîäîîñ õàðãàëçàõ 2 îðîíòîé òîîíû óòãûã îëîõ 10* (code( öèôð 1 ) - code(‘0’))+ code( öèôð 2 )-code(‘0’) õýëáýðòýé èëýðõèéëýë 4 óäàà àøèãëàãäñàí áàéãàà. Èéìýýñ 2 öèôðèéí êîä ºãºãäºõºä õàðãàëçàõ õî¸ð îðîíòîé òîîíû óòãûã áóöààæ ºãäºã  ôóíêö  val( òýìäýãò  d,c)
íàò  s; s:= 10* (code(d) - code(‘0’))+ code(c)-code(‘0’)   áóö (s); Ôóíêöèéã òîäîðõîéëæ õýðýãëýâýë óã àëãîðèòìûã äîîðõ õýëáýðòýé áè÷èæ áîëíî

More Related Content

PPT
Lecture914
PPT
PDF
Òîãòìîë ã¿éäëèéí ìàøèíû á¿òýö õèéö
PDF
lecture 4
PPT
Lecture.7
PDF
Òðàíñôîðìàòîðûí îðóóëãûí á¿ä¿¿â÷
PDF
Òðàíñôîðìàòîðûí àæèëëàõ çàð÷èì
PPT
Lecture915
Lecture914
Òîãòìîë ã¿éäëèéí ìàøèíû á¿òýö õèéö
lecture 4
Lecture.7
Òðàíñôîðìàòîðûí îðóóëãûí á¿ä¿¿â÷
Òðàíñôîðìàòîðûí àæèëëàõ çàð÷èì
Lecture915

What's hot (13)

PPT
Lecture915
PPTX
Lecture 1
PPT
Lecture915
PDF
Mult An App
PPT
Lecture913
PPT
Lecture913
PPT
Lecture913
PPT
8 angiin hichee энхбаярl
PPTX
ххтбс 9
PDF
20090315 hardnessvsrandomness itsykson_lecture04
PPTX
ххтбс 9
PPTX
ххтбс 9
PPTX
ххтбс 9
Lecture915
Lecture 1
Lecture915
Mult An App
Lecture913
Lecture913
Lecture913
8 angiin hichee энхбаярl
ххтбс 9
20090315 hardnessvsrandomness itsykson_lecture04
ххтбс 9
ххтбс 9
ххтбс 9
Ad

More from Munkhchimeg (20)

DOC
Protsesor
PPT
Lecture916
PPT
Lecture911
PPT
Lecture912
PPT
Lecture910
PPT
Lecture5
PPT
Lecture9
PPT
Lecture8
PPT
Lecture7
PPT
Lecture6
PPT
Lecture4
PPT
Lecture3
PPT
Ded Algorithm
PPT
Ded Algorithm1
PPT
Tobch Lecture
PPT
Tobch Lecture
DOC
Pm104 Standard
DOC
Protsesor
DOC
Pm104 2004 2005
PPT
Lecture916
Protsesor
Lecture916
Lecture911
Lecture912
Lecture910
Lecture5
Lecture9
Lecture8
Lecture7
Lecture6
Lecture4
Lecture3
Ded Algorithm
Ded Algorithm1
Tobch Lecture
Tobch Lecture
Pm104 Standard
Protsesor
Pm104 2004 2005
Lecture916
Ad

Lecture914

  • 2. Àãóóëãà 1.Äýä àëãîðèòì ôóíêö 2.Ôóíêö õýðýãëýõ 3. Õ¿ñíýãòýí àðãóìåíòòàé äýä àëãîðèòì
  • 3. Äýä àëãîðèòì-ôóíêö Èéìä àëãîðèòìûí õýëýíä ôóíêöèéã: Ôóíêö íýð (òºðºë_1 ïàðàìåòð_1,…,òºðºë_n ïàðàìåòð_n) áóö(áóöààõ_óòãà); Áèå ¿éëäë¿¿ä
  • 4. Ýíä áóöààõ_óòãà íü õóâüñàã÷ áîëîí äóðûí èëýðõèéëýë áàéæ áîëíî. Ôóíêö õýðýãëýõ Ìàòåìàòèê ôóíêöèéã èëýðõèéëýëä øóóä áè÷èæ àøèãëàäàã ó÷èð åðäèéí äýä àëãîðèòìààñ èë¿¿ òîõèðîìæòîé áàéäàã
  • 5. Æ1 : x, õýðýâ x  y max(x,y)= ôóíêöèéã àøèãëàí y, õýðýâ x<y ºãñºí a,b,c áîäèò óòãàíä
  • 6. Áîäîëò Àðã a,b,c; ¿ð ä¿í: t áîäèò:a,b,c,t; îðóóë(a,b,c); t:= t:=t/(1+ ãàðãà (t); òºãñ. ôóíêö max(x,y) õýðýâ y>x áîë x:=y áóö (x); max(a,b+c)+ Max(a,a+c): Max(a+b*c,3.1415));
  • 7. Äýä àëãîðèòìûã àøèãëàõ Àðãóìåíòèéí ºãñºí óòãàíä òîäîðõîé íýã óòãûã õàðãàëçóóëàí áîäîæ ºãäºã äýä àëãîðèòìûã ôóíêö õýëáýðòýé áè÷èõ íü èë¿¿ òîõèðîìæòîé.
  • 8. Ãýòýë áè÷èõ,óíøèõ,íýýõ,õààõ ã.ì òîäîðõîé ¿éëäýë áèåë¿¿ëýõ ýñâýë õýä õýäýí óòãà áîäîõîä çîðèóëñàí äýä àëãîðèòìûã äýä_àëã õýëáýðòýé ãîëöóó áè÷èæ øààðäëàãòàé ¿éëäëèéã ã¿éöýòãýõèéí òóëä õàðãàëçàõ äýä àëãîðèòìûã íýðýýð íü äóóäàæ òóñãàé íýã ¿éëäýë ìýò áè÷èæ àøèãëàäàã áàéíà.
  • 9. Ôóíêö çîõèîæ àøèãëàõ æèøýý 2.Íàòóðàë òîî n ºãºãäñºí áîë n,n+1,…,2n òîîíóóä äîòîð ÿëãàâàð íü 2-òîé òýíö¿¿ áàéõ àíõíû òîîíóóä áàéãàà ýñýõèéã øàëãà.
  • 10. Áîäîëò Íàò:n,k ; òåêñò s ; îðóóë(n); s:=‘áàéõã¿é’; K:=n,2*n-2 ¿åä_äàâò õýðýâ prime(k) and prime(k+2) áîë {ãàðãà(k,k+2);s:=‘áàéíà’} Ãàðãà(s) Òºãñ.
  • 11. Õ¿ñíýãòýí àðãóìåíòòàé äýä àëãîðèòì Íýã áîëîí îëîí õýìæýýñò õ¿ñíýãòèéã áîëîâñðóóëàõ ¿éëäýë ïðàêòèêò ò¿ãýýìýë øààðäàãääàã òóë ýäãýýð ¿éëäëèéã ã¿éöýòãýõ àëãîðèòìûã äýä àëãîðèòì áîëîí ôóíêö õýëáýðòýé áè÷èõ íü èë¿¿ òîõèðîìæòîé.
  • 12. Èéì òîõèîëäîëä äýä àëãîðèòìûí àðãóìåíò íü õ¿ñíýãò áàéõ ¸ñòîé. Äýä àëãîðèòìûí àðãóìåíòûí óòãûã ãëîáàëü õóâüñàã÷èéí òóñëàìæòàéãààð äàìæóóëàõ íü òîõèðîìæã¿é òóë äýä àëãîðèòì, ôóíêöèéã õèéñâýð àðãóìåíòòàé áè÷äýã.
  • 13. Õèéñâýð àðãóìåíòòàé õ¿ñíýãò áàéõ ¿åä: ò¿ëõ¿¿ð ¿ã õ¿ñíýãò ; ¿¿íèé òóñëàìæòàéãààð ò¿¿íèéã òîäîðõîéëæ íýð, õýìæýýñ, ýëåìåíòèéí òîî - ã çààæ ºãíº. Èíãýõýä ñàíàõ îé õóâààðèëàãääàã áà ò¿¿íèé ýëåìýíòýä äóãààðààð íü õàíäàæ áè÷èõ íºõöºë á¿ðääýã.
  • 14. Õ¿ñíýãòýí àðãóìåíòòàé äýä àëãîðèòì, ôóíêöèéí õóâüä õèéñâýð àðãóìåíòûã òîäîðõîéëæ ºãºõ人: 1. Ýíý àðãóìåíò íü õ¿ñíýãò ãýäãèéã ÿëãàæ, çààæ ºãºõ øààðäëàãàòàé . 2. Óã õ¿ñíýãòèéí ýëåìåíòèéí òîî, áóþó õýìæýýã ìºí àðãóìåíò áîëãîí àâäàã áàéõààð òîäîðõîéëîõ íü ç¿éòýé.
  • 15. Õèéñâýð àðãóìåíòûí æèãñààëò äîòîð õ¿ñíýãòèéã òîäîðõîéëîõäîî, ¿íäñýí àðãóìåíòýä ò¿¿íèéã òîäîðõîéëäîã àðãûã õýðýãëýäýã. Òýãýõäýý õ¿ñíýãòèéí æèíõýíý óòãûã õóóëæ äàìæóóëíà ãýäýã, ñàíàõ îé èõ øààðäàõààñ ãàäíà, õóãàöàà àëäàõàä õ¿ðäýã òóë õ¿ñíýãòèéí çºâõºí õàÿãèéã äàìæóóëàõ àðãà õýðýãëýíý. Èíãýñíýýð ýëåìýíòèéí m àõ òîîã áè÷èõ øààðäëàãàã¿é áîëíî.
  • 16. Æèøýý 3. : Íàòóðàëü òîî n,m áà à 1 ,à 2 ,...à n ; b 1 ,b 2 ,…b n ãýñýí 2 áîäèò òîîíû äàðààëàë ºãºãäñºí áîë 2 äàðààëëûí max óòãóóäûí ÿëãàâàðûí êâ-ûã îë. Ôóíêö array _max ( áîäèò õ¿ñíýãò à (5), íàò n) áîäèò max; int i; max:=a i I:=2,n ¿åä_äàâò õýðýâ max<a i áîë max:= à i Áóö (max);
  • 17. Æ: Àëã áîäèò õ¿ñíýãò à (mn), b(mn); íàò n,m,I; Áîäèò s; Îðóóë (n); Îðóóë (a i ; I:=1,n); Îðóóë ((m); Îðóóë (b i ; I:=1,m); s:=(array_max(a, n)-array_max(b,m)) 2 Ãàðãà (s) Òºãñ
  • 18. Æèøýý 4 : Áîäèò òîî à 1 ,à 2 , b 1 ,b 2 ,c 1 ,c 2 ºãºãäñºí áîë { ãýñýí øóãàìàí òýãøèòãýëèéí ñèñòåìèéí øèéäèéã îë. ¯¿íèéã êðàìåðèéí ä¿ðìýýð áîäíî.Ýíý ä¿ðýì ¸ñîîð ñèñòåìèéí ¿ë ìýäýãäýã÷¿¿äèéí ºìíºõ êîýôôèöèåíò áîëîí ñóë ãèø¿¿íýýð çîõèîñîí òîäîðõîéëîã÷óóäààð øèéäèéã øèíæèëæ òîãòîîäîã.¯¿íä :
  • 19. Õýðýâ d= 0 áîë ñèñòåì ãàíö øèéäòýé áºãººä x=d x /d , y=d y /d áàéíà. Õýðýâ d,d x ,d y =0 áóþó d=0 áà d x 2 +d y 2 =0 áîë ñèñòåì òºãñãºëã¿é îëîí øèéäòýé. Õýðýâ d=0 áà d x 2 +d y 2 =0 áîë ñèñòåì îãò øèéäã¿é áàéíà Ýíäýýñ ¿çâýë 2-ð ýðýìáèéí òîäîðõîéëîã÷ áîäîõ àëãîðèòì 3-í óäàà øààðäàãäàõ òóë ºãñºí ìàòðèöàä õàðãàëçàõ òîäîðõîéëîã÷èéã áîäîõ ôóíêöèéã çîõèîæ àøèãëàâàë çîõèíî Ôóíêö det( áîäèò õ¿ñíýãò a(2,2)) Áîäèò ó ; ó: =a 11 a 22 -a 12 b 21 Áóö ( ó )
  • 20. Ô óíêöèéã àøèãëàí øóãàìàí òýãøèòãýëèéí ñèñòåìèéã øèíæëýõ àëãîðèòìûã áè÷âýë: Æèøýý 5: íàò n=2; áîäèò õ¿ñíýãò a(n,n),c(n),d(n),b(n,n); áîäèò dd; íàò I,j,k; òåêñò s; i:=1,n ¿åä_äàâò {j:=1,n ¿åä_äàâò îðóóë (a ij ); îðóóë (c i )}; dd:=det(a); k:=1,n ¿åä_äàâò {I:=1,n ¿åä_äàâò {J:=1,n ¿åä_äàâò b ij :=a ij ; b ik :=c i ; };
  • 21. {J:=1,n ¿åä_äàâò b ij :=a ij ; b ik :=c i ; }; d k := det(b) }; Õýðýâ dd=0 áîë { ãàðãà (‘x=‘,d 1 /dd,’y=‘,d 2 /dd) ; s:=‘ ñèñòåì ãàíö øèéäòýé ’} Ýñâýë õýðýâ d 1 2 +d 2 2 =0 áîë s:=‘ ñèñòåì òºãñãºëã¿é îëîí øèéäòýé ’ Ýñâýë s:=‘ ñèñòåì øèéäã¿é ’ ãàðãà (s) Òºãñ
  • 22. Æèøýý 6 :Îþóòíû á¿ðòãýë ìýäýýëëèéã áîëîâñðóóëàõ àëãîðèòìä 2 öèôðèéí êîäîîñ õàðãàëçàõ 2 îðîíòîé òîîíû óòãûã îëîõ 10* (code( öèôð 1 ) - code(‘0’))+ code( öèôð 2 )-code(‘0’) õýëáýðòýé èëýðõèéëýë 4 óäàà àøèãëàãäñàí áàéãàà. Èéìýýñ 2 öèôðèéí êîä ºãºãäºõºä õàðãàëçàõ õî¸ð îðîíòîé òîîíû óòãûã áóöààæ ºãäºã ôóíêö val( òýìäýãò d,c)
  • 23. íàò s; s:= 10* (code(d) - code(‘0’))+ code(c)-code(‘0’) áóö (s); Ôóíêöèéã òîäîðõîéëæ õýðýãëýâýë óã àëãîðèòìûã äîîðõ õýëáýðòýé áè÷èæ áîëíî